
N A T I O N A L  AERONAUTICS A N D  S P A C E  ADMINISTRATION 

Technical Memorandum 33-477 

Receptance Coupling of Structural Components 
Near a Component Resonance Frequency 

Loren 0. Lutes 
Ewatd Heer 

N 0 

X 

> 

i 
L 

9 5 3  

J E T  P R O P U L S I O N  L A B O R A T O R Y  
C A L I F O R N I A  I N S T I T U T E  O F  T C C W N O L O O Y  

P A  S A D  E N  A ,  C A L I F O R  N l  A 

October 15, 1968 



N A T I O N A L  AERONAUTICS AND S P A C E  ADMINISTRATION 

Technical Memorandum 33-477 

Receptance Coupling of Structural Components 
Near a Component Resonance Frequency 

Loren 0. Lutes 

Ewald Heer 

J E T P R 0 P U 1 5  I O  1.1 1 A B 0 R A T 0 R Y 
C A 1 I F 0 R N I A I N f T I T U i- E 0 F T E c H N 0 L O G Y  

P A S A D E N A ,  C I ( L I F 0 R N I A  

October 1 a, 1968 



TECHNICAL MEMORANDUM 33-41 I 

Copyright 0 1969 
Jet Propulsion Laboratory 

California Institute of Tech no logy 

Prepared Under Contract No. NAS 7-100 
National Aeronautics and Space Administration 



The work described in this report was performed by the Engineering Mechanics 
Division of the Jet Propulsion Laboratory. 

JPL TECHNICAL MEMORANDUM 33-41 I iii 





Contents 

Llnhoduction . . . . . . . . . . . . . . . . . . . . . . . . .  1 

II . TheSystem . . . . . . . . . . . . . . . . . . . . . . . . .  1 

111 . The Problem of Component Resonance . . . . . . . . . . . . . .  3 

N . Alternative Form for Total Syzkm Rec+iances . . . . . . . . . . .  4 

V . A Means of Avoiding the Component Resonance Problem . . . . . . .  5 

VI . Summary and Conclusions . . . . . . . . . . . . . . . . . . .  7 

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

Figure 

1 . Typical coupling link . . . . . . . . . . . . . . . . . . . . . .  3 

JPL TECHNICAL MEMORANDUM 33-41 1 V 



Abstract 

vi 

The receptmce matrix of a coupled system is derived in terms of the receptance 
properties of the individual component systems and coupling links. It is then shown 
that the resulting matrix equation may give quite inaccurate results near a reso- 
nance frequency of an individual component system where the receptance matrices 
for that component have large, nearly parallel wlumns. A formulation of the prob- 
lem is given in terms of matrices with the large, parallel parts of the columns 
removed, thus avoiding the inaccuracy difficulty with very little additional com- 
putation. The formulation is valid for systems with damping, since all receptance 
terms are treated as complex numbers. 
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Receptance Coupling of Structural Components 

Near a Component Resonance Frequency 

1. Introduction 

The general method of characterizing the dynamic 
properties of linear systems by frequency-dependent ratios 
between inputs and outputs is now well known. The ratio 
factors are commonly put in matrix form and are variously 
called impedancts, admittances or mobilities, receptances, 
‘our-pole parameters, transmission matrices, etc., depend- 
ing on the particular type of ratio chosen. 

If the dynamic properties of individual components of 
a complex system are known, then only matrix algebra is 
needed to determine the dynamic properties of the com- 
plex system. Although the matrix coupling operation is 
ar ,,lytically straightforward, certain computational diffi- 
culties may arise in practice. In particular, each com- 
ponent system may have some resonancc frequencies near 
which h!l ratios of response to excitation will become very 
large (or inverse ratios will becom.3 very small). In gen- 
eral, the resonance frequencies of the entire coupled 
system will not coincide with those of the individual 
components. Thus one may of!en find that “normal-size” 
dynamic characteristics (reflecting no resonance) must be 
computed by taking differences between very large terms 
that reflect an individual zomponent system resonance. 
This report presents L formulation for greatly improving 

computational accuracy near a component-system reso- 
nance frequency. The receptance formulation of dynamic 
Characteristics’ is used. 

II. The System 

The total system considered in this study is made up of 
N component systems coupled together by n coupling 
links. The coupling links are cmsidered to have flexibility 
and damping, but no m m .  The Jth component system 
( f  = 1 to N) has nJ, pr.:nts to which coupling links are 
attacned, ni points at which exciting forces are applied, 
and nl, ,?oints at which the displacement response is trl be 
determined. These points will hereinafter be referred to as 
the coupling points (numbered from 1 to n:), excitation 
points (1 to nb). and the response points (1 to nl) of com- 
ponent I .  Each coupling link is attached to two coupling 
points (in two different components), so that n is related 
to the nl. values: 

‘E. Heer, “Coupled Systems Subjected to Determinate and Random 
.~iput,” I n t .  J. Solids Structures, Vol. 3, pp. 155-188, 1967. 
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One assumes that certain matrices of receptance values 
for the component systems are known. In particular, 
assume that one knows the receptances necessary to write 
the column matrix of displacements at the response points 
in component 1 (J = 1 to N) as 

{X’} = [QYI {P} + [*&I {M’} (2) 

and the column matrix of coupling-point displacements as 

{ D J }  = [Dl {P} + E 1  {M’) (3) 

where (P} is the column matrix of forces applied to the 
excitation points of component J and { M’} is the column 
matrix of forces applied to the coupling points of wm- 
ponent 1. 

Equations (2) and (3) can also be expanded to describe 
the total system as 

{XI = [ 0 1  {PI + m1 {MI 
{D) = [a1 {PI + rd1 {MI 

(4) 

(5) 

and 

where the four column matrices can be paeitioned as 
illustrated for { X} : 

and the partitioning of the four rectangular receptance 
matrices is illustrated by [a] : 

. . .  

. .  - *  . w :I (7) 

The elements of the rectangular receptance matrices in 
Eqs. (2) and (3) are, in general, complex and frequency- 
dependent. The elements of the column matrices can be 
either steady-state harmonic functions written as complex 
constants times elwt or as Fourier transforms of the time 
histones of the specified forces and displacenmts. 

For the total system one seeks a rectangular (n, X n,) 
receptance matrix [dj that satisfies 

and 
N 

n, : C ni (10) 
‘ 1  

To obtain the matrix [HI one must know the location 
and properties of the coupling links in addition to the 
component receptance matrices of Eqs. (2) and (3). To 
specify the location of coupling links, let [C] be an 
(n X 2n) rectangular matrix that can be partitioned as 

where the [C’] submatrix is (n X n:). If Coupling link 2 
is attached to coupling point i in component I and coupling 
point j in component J ,  then either let 

c:i = +1 w.d c;, = -1 (12) 

Cii = -1 and c:, = +1 (13) 

or let 

Let all other elements of row 1 of [C] be zero. Then row 
I of IC] { D} is the relative displacement of the two ends 
of coupling link 1. Let B, be the force in coupling link 1. 
(Since the link is massless, this force is the same at both 
ends of the link.) Since the system is linear, one can then 
write 

[CI PI = rK-1 {ai (14) 

where PKJ is a diagonal matrix of complex frquency- 
dependent terms. 

The column matrix of coupling-point forces {M}Js 
related to the column matrix of coupling-link forces { M} 
by the tralzspose of the [C] matrix 

The preceding equations are easily confinned by analyz- 
ing Fig. 1 in which the extension of coupling link I is gov- 
erned by 

0: - 0: = KI‘ (*Hi) (16) 
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4 COMPONENT J 1 COMPONENT I 

COUPLING POINT i COUP’ ING POINT i 

Fig. 1. Typical coupling link 

Equating forces at each mupling point gives 

Using the plus sign for Gl in Eqs. (16) and (17) confirms 
Eqs. (14) and (15) with the row I elements of [C] given 
by Eq. (13). Using the minu? sign for also confirms 
Eqs. (14) and (15), but this time with the [C] elements 
given by Eq. (12). Thus Eqs. (12) and (13) are equivalent. 

Combining Eqs. (5), (14), and (15) gives 

Letting [A-’1 denote the inverse of [A], one c. I then use 
Eq. (15) to substitute {G} from Eq. (18) into Sq. (4) to 
obtain 

{X I  == I[GI + [*GI [CIT [A-’I [Cl [GI] {P} (20) 

Comparison of Eq. (20) with Eq. (8) shows that the desired 
[ H] matrix is given by 

Because of the sparse nature of the receptance matrices 
illustrated by Eq. (7), one can partition [HI in the obvious 
manner and obtain 

where 

[ @‘J] = [O] forZfJ (23) 

and 

[WJ1 = [aJ] (24) 

111. The Problem of Component Resonirnce 

Nok that in matrix [A] the i ,  j wmponent of the matrix 
[C] [a] [CIr :s the ratio between the relative displace- 
ment of the two attachmen\ points of coupling link i 
and the force in coupling link j,(aj), when all exciting 
forces are zero and all coiipling forces except XTj are zero. 
For i -# i ,  this relative displacement is an incompatibility 
of this single-force arrangement. For i = j ,  part of the 
relative displacement may be accommodated by the re- 
ceptance of coupling link i, and the remainder is m incom- 
patibility. Thus wi:.h [A] defined by Eq. (19), the element 
A,,  is a measure of the inccrm,yatibility across coupling 
link i due to a force in coupling link j .  The total column j 
of [A] gives the incompatibilities across all the coupling 
links due to a force in coupling link j .  

Suppose that a harmonic force with frequency near a 
resonance frequency of component R is applied to that 
component. The component response will be large, and 
for small damping it will be very nearly a pure mode 
shape. Thus the “shape” of the resor.ant component re- 
sponse will be only slightly affected by the location of 
the applied force. Hence, near a resonant frequency of 
component R (R = 1 to N), the rows and mlb.i-ns of ‘A] 
that correspond to coupling links attached to con~po- 
nent R will contain very large values. These columns with 
large values, though, will all be iiearly palallel in :be 
sense of vectors in n-dimensional space. 

In particular, say that for some par t ida !uencj 
one finds that all the component receptance terms for 
component R are O(A) where A is large. Say that all the 
terms of [’K J and ot’ .he other component receptancz 
matrices are 0 (I). Then by separating the contibutio:i of 
the resonant mode of component R,  one can write [Aj as 
a matrix with all 0 (1) terms plus a matrix with all 0 (A) 
(and zero) terms. The columns of the 0 (A) rnawlx, though, 
will all be parallel. 

Separating [A] as suggested, one can easily show 
that IAI is 0 (A). Similarly, the determinants of the 
cofactor matrices of [A] are also 0 (A). Since the elements 
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of [A-'1 are ratios of cofactor determinants to IAI, it is 
obvious that [A-lj  is O(1). 

Since [A-'1 is 0(1) and the component receptance 
matrices of R are 0 (A), Eq. (22) gives [ H R J ]  and [ H I R ]  as 
products of 0 (I) matrices with an 0 (A) matrix. Further, 
Eq. (22) gives [ H R K ]  as an O ( h )  matrix plus a product 
involving two O(A) matrices, However, since [HI is the 
receptance matrix for the total caupled system, it should 
be 0 (1) exccpt near a re: rlant frequency of the total sys- 
tem. Thus, in general, 7 '22) will rc-sult in calculating 
O(1) terms as differenc etween O ( h )  terms for [ H R J ]  
and [ H I R ] .  The computational difficulty of evaluating 
these 0 (1) terms accuratp'y is obvious. 

IV. Alternative Form for Total System Receptacres 

A method of evaluating [HI mcre accurately can best 
be seen by writing Eq. (22) in a somewhat different form. 
First one can write 

by defining two new matrices: 

Column i of [ a J ]  contains n elements an i  gives in com- 
ponent J the incompatibilities at all thc coupling points 
due to a unit force at excitation point j in component J 
(with all coupling forces equal to zero), Similarly, column 
i of [ *PI gives the displacements at all the response points 
of component I due to a force in coupling link i. 

As mentioned earlier, most of the above matrices are, 
in general, cumplex. One method of handling complex 
matrix arithmetic is to expand each matrix into a double- 
size real matrix. For example, let each of the rectangular 
matrices be replaced as follows: 

where the complex matrix is given by 

and let each ol the colrimn matrices be replaced by 

whzn the coniplex form is 

Use of the double-size iormu!ation for the matrices 
[CJ]  (with only zer7 imaginary parts! and the mat- 
rices ['K.J, as well as all the component reccptance 
matrices, results in no difference in form ot any of the 
abwe matrix equations. The matrices [A], [A-'I, [ * $ I ] ,  

[PI ,  and [HIJ] are now also double-size real matrices 
partitioned as in Eq. (28). 

Using the double-size matrix fori.iulation, on-. can ex- 
pand Eq. (%) for the i ,  j term of [ H I J ]  as 

for i = 1 to 2n: and j = 1 to hi. 

Alternatively, one can .w-ite Hi$ as a ratio of determi- 
. wts of rea! matrices: 

The validity of Eq. (33; can he deinonstratcd by 1. .b 

that expanding.the larger determinant of Eq. (33) rirst 
by the upper row, then by the left-hand column, gives 
67:; I - [A] I plus a double summation over k and I of 
( -l)k+l+' * $ ik  e j  times the determinant of - [AJ with 
column k and row 1 omitted. Since [A] is (2n X cn), ono 
can see that 1 - [A] = 1 AI, arid (-- l)k+r+l times thecl-ier- 
minant of - [ A ]  with column k and row 1 omitr-ed ia tile 
cofactor of element Ark of [A]. Noting that [A-'1 is equal 
to the transpose of the cofactor matrix of [A] Jivided by 
I A I completes the verification that Eq. (33) is quivalent 
to Eq. (32). 

Note that for 1 L k L n ,  column k + 1 of the larger 
determinant in Eq. (33) gives either the real or the imag- 
inary part of the displacement at response point i in 
component I, plus the real and imaginary parts of the 
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iminpaiibihh across each of the coupliy* links, all due 
to a force in mui,ling link k. Co1un:us n - 2 I:, ' 1 give 
a different airangement of similar information blumn 1 
gives either the real or the imaginary part of the displace- 
ment at response point i in cam-nent I. plus the real and 
imaginary parts of the incompatibilih across each of the 
cwpling l i n k  all due to a force at vscitation point i in 
component J. 

h'earamonant~frequencyof cnmponent R(R=ltoK). 
the large 0 ( A )  parts oi columns 1 to n of the double-size 
[A] matrix \vi11 k pxakl .  In addition, t!w 0 (A) parts of 
columns n - 1 to ?n \vi11 be parallel. Similarly, for the 
larger matrix in Eq. (Sj, the O(A) parts of columns 2 to 
n + 1 are parallel, the O(X) parts of columns n + 2 to 
en t 1 are parallel. and the 0 ( A t  part of column I IS 
parallel to the O(A1 parts of either 2 to n + 1 or n -+ 2 to 
2n + 1, depending on whether I4 it or 1 > n. 

V. A Means of -voiding the Co.nponent 
Resomrnce hMem 

To evaluate the determinant of a matris with nearly 
parallel columns, one can keep one column (say, column rn) 
unchauged and subtract a multip!e of column m from each 
of the other ~ lu rnns .  To do this for the douole-size real 
matrix [A]. it is advantzgwus to h t  choose m to corre- 
spond to one of the '.longest" columns of [ A ] .  in particu- 
lar, let 

2. 

E t =  Aldili (34) 
. - I  

and let m be chosen so that 

and 

E, L E k  fo rk=  l t o n  (36) 

a n ,  = i-l (37) 

Next, let 

and 

Then for k 4 n atid k # m, r q  tiines column m is the com- 
ponent df mlwnn k that is parallel to cclwnn ni. One can 
also chow. from the partitioned form o. t double-size 
[A] matrix, that for k > n and k f m -t n, ak~n times 
column m t n is the component of coliiknn k t !~ 
parallel to column rn - .I .  

IR: a new matrix [B] be defined by 

The matris [B] will then hr;e only two colmins (m and 
m -L L; that are O(A). Since [B] \\*as f o n d  bj a::btract- 
ing multiples of certain columns of [A] from the other 
columns, one knows that 

Similarly, define [ * $1 for Z = 1 to A' by 

This removes the O(A) portions from all columns except 
m a n d m + n o f  [=PI. 

To remove the 0 (A) portions from column 1 of the 
iarger determinant in Eq. (33) for J = R,  let 

Then define aew matrix terms by 

Consider now the matrix 

I 
I 
t 

I 
t 

. . .  _ - -_  

- [BI 
(49) 

'n. .",,, = 0, two columns of cxpression (49) are identical 
. the corresponding columns of the larger determinant of 
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Eq. (33); namely, shown in Eq. (28), the real part of the (n X n) [ B ]  matrix 
will be the upper-left submatrix and the imaginary part 
will be the lower-left submatrix. The complex [ B] matrix 
can then be found directly from the complex [A] matrix 
by use of Eq. (39). (50) 

and 

Further, for k 4 n  and k#m, column k + 1 of expres- 
sion (49) is formed by subtracting U t  times column m + 1 
from column k + 1 of Eq. (33). Similarly, for k > n and 
k f m  + n, column k + 1 of expression (49) is formed by 
subtracting times column m + n + 1 from column k + 1 
of Eq. (33). Finally, column 1 of expression (49) is formed 
by subtracting # times column m + 1 from column 1 of 
Eq. (33) for j L ni, and by subtracting f l  times column 
m + n + 1 for j > ni. 

Thus the determinant of expression (49) is equal to the 
larger &terminant of Q. (33) and one can write 

Similarly, one can verify that the [+"I. [ 31, and 
[5'] matrices can be considered as complex original-size 
matrices, which can be found directly from the complex 
[QfJ], [*PI, and [3] matrices by use of Eqs. (47), (a), 
and (45). 

Thus Eq. (54) can be considered as relating original-size 
complex matrices, rather than the double-size real matrices 
used in deriving it. The double-size fmnulation is con- 
venient for analytical study, but not n e c e d y  for 
numerical calculation of the *mplex matrix arithmetic. 
Since Eq. (54) is valid as an original-size complex matrix 
equation, one can use any suitable method for the numeri- 
cal calculations. 

Note that the Q and terms are defined in the dwble- 
size formulation. Equations (34), (38), and (44) can alter- 
natively be written as summations from 1 to n, as follows: 

By expanding by the upper TOW and the left-hand column 
(as in the verification of Eq. 31, one mY write Eq. (52) as 

The formulation given here verifies that &. (52) is 
equivalent to Eq. (33). but Eq. (52) can be evaluated more 
accurately, since o(A) pardel  columns have been re- 
moved from the determinants. One can d l y  show that 
this improved accuracy also carries over to the matrix 
Eq. (a), which is equivalent to Eq. (22). 

za h 

Hi:.= +:$ + I: 2 *&Bi;gj (53) 
k.1 1 - 1  

Thus one can write the matrix equation 
From the definitions of the new matrices, one finds that 

all elements of [+'"I and [ 31 are 0 (I) for Z and I = 1 to N, 
in spite of some component resonance giving C (A) con- 
tributions to the original component receptance matrices. 
Similarly, the original-size [ c 311 for Z = 1 to N and [B] 
have all 0 (1) terms, except in column m where they have 
O(A) terms. From the form of [B] one knows that IBI 
is 0 (A) and the cofactors of tke elements of [B] are 0 (A), 
except for elements in column m that have 0 (1) cofactors. 

[ H f J ]  = [+"I + [ * $ I  [B-'1 [a] (s) 
If [B] is partitioned into four (n X n) submatrices, one 

finds that the upper-left and lower-right submatrices are 
identical, and the upper-right submatrixis the same as the 
lower-left, except that the sign of each term is reversed. 
Thus the (2n X 2n) [B] matrix can be considered as a 
double-size real version of an (n X n) complex matrix. As 
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Since [B-'1 is the transpose of the cofactor matrix divided 
by I B I, one Pnds that [ B-'1 has all 0 (1) terms except in 
row m. which is 0 ( 1 j A ) .  Thus all terms in Eq. (54) are 0 (1) 
except &., terms that are 0 (A) and Bd, terms that are 
0 ( l / A ) .  Expanding - the matrix multiplication of Eq. (54) 
shows that a +#, term is always multiplied by a B;'j 
term. Thus using Eq. (54) to evaluate [HfJ] involves addi- 
tions of only 0 (1) terms. 

VI. Summary and Coldusions 

The receptance matrix of a coupled system is derived in 
terms of the receptance properties of the individual com- 

ponent systems and coupling links. The result is Eq. (a), 
which is simple in form, but presents computational diffi- 
culties near a resonant frquency of one of the compo- 
nents. The Wculties arise hi the fact that near a 
component resonant frequency the receptance matrices 
for that component have large. nearly parallel columns. 
Equations (39), (e), (45). and (47) define new matrices 
that have the large parallel parts of the columns removed. 
With the use of these new matrices, Eq. (54) is shown to 
be equivalent to Eq. (22). but without the component - 
nance computational difficulty. Systems with damping can 
be treated by this method, since all the receptances are 
considered as complex numbers. 

Nomenclature 

0: constrained displacement in system J [@I receptance matrix between a couphng 
at point i point and an excitation point in sys- 

temi 
M: constrained force in system 1 at point j [+QJ] receptancematrixbetweenacoupling 

steady-state excitation in system J at point and a response point in system J 

point i [W] receptance matrix between two k l d  

steady-state response in system J at 
point i 

[$I receptance matrix between coupling 

X J  

points in system J 

points in system J 

t l  -*matrix 

[ 1' transposeofrectangularmatrix 

{ } columnmatrix 
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